perm filename ZF.AX[W78,JMC] blob
sn#453718 filedate 1979-06-24 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00002 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 ! Axioms for Zermelo-Fraenkel Set Theory AJT June 75, modified JMC !
C00005 ENDMK
C⊗;
COMMENT ! Axioms for Zermelo-Fraenkel Set Theory AJT June 75, modified JMC !
DECLARE INDCONST nl int;
DECLARE PREDCONST ε 2[INF];
DECLARE PREDCONST ⊂ 2[INF];
DECLARE OPCONST ∪ 2[INF];
DECLARE OPCONST ∩ 2[INF];
DECLARE OPCONST union 1[pre];
DECLARE OPCONST intersect 1[pre];
DECLARE INDVAR r s t u v w x y z;
DECLARE PREDPAR A 2 B 1;
AXIOM ZF:
EXT: ∀x y.(∀z.(zεx≡zεy)≡x=y); % Extensionality
EMT: ∀y.¬yεnl; % Null set
PAIR: ∀x y w.(wε{x,y}≡w=x∨w=y); % Unordered pair
UNION: ∀x z.(zεunion(x)≡∃t.(tεx∧zεt)); % Sum set
INTERSECT: ∀x z.(zεintersect(x)≡∀t.(tεx⊃zεt)); % Product set
INF: (0εint∧∀y.(yεint⊃(y∪{y})εint)); % Infinity
INDUCT: B(0)∧∀x.(xεint∧B(x)⊃B(x∪{x}))⊃∀x.(xεint⊃B(x)); % Induction
REPL: ∀x.∃y.∀z.(A(x,z)≡y=z) ⊃ % Replacement
∀u.∃v.(∀r.(rεv ≡ ∃s.(sεu∧A(s,r))));
SEP: ∀x.∃y.∀z.(zεy≡zεx∧B(z)); % Separation
POWER: ∀x.∃y.∀z.(zεy≡z⊂x); % Power set
REG: ∀x.∃y.(x=0∨(yεx∧∀z.(zεx⊃¬zεy)));;; % Regularity
DECLARE PREDCONST FUN 1,INTO 2,PSUBSET 2[INF];
DECLARE OPCONST rng 1 dom 1;
AXIOM
SUBSET: ∀x y.(x⊂y≡∀z.(zεx⊃zεy));
PROPSUBSET: ∀x y.(PSUBSET(x,y)≡x⊂y∧¬x=y);
PAIRFUN: ∀x y z.(zε{x,y}≡z=x∨z=y);
UNITSETFUN: ∀x.( {x}={x,x} );
OPAIRFUN: ∀x y.( <x,y>={{x},{x,y}} );
FUNCTION: ∀w.(FUN(w)≡∀z.(zεw⊃∃x y.(z=<x,y>))∧
∀x y z.(<x,y>εw∧<x,z>εw⊃y=z) );
DOMAIN: ∀w x.(xεdom(w)≡FUN(w)∧∃y z.(yεw∧y=<x,z>));
RANGE: ∀w x.(xεrng(w)≡FUN(w)∧∃y z.(yεw∧y=<z,x>));
INTO: ∀w x.(INTO(w,x)≡rng(w)⊂x);
SUM: ∀x y z.(zεx∪y≡zεx∨zεy);
PRODUCT: ∀x y z.(zεx∩y≡zεx∧zεy); ;